Test Code LABTGMS Thyroglobulin Mass Spectrometry, Serum
Additional Codes
Test Name in EPIC | EPIC Test Code | Mnemonic | Mayo Test ID |
---|---|---|---|
THYROGLOBULIN MASS SPECTROMETRY, SERUM | LABTGMS | TGMS | TGMS |
Reporting Name
Thyroglobulin, Mass Spec., SUseful For
Accurate measurement of serum thyroglobulin (Tg) in patients with known or suspected antithyroglobulin autoantibodies (TgAb) or heterophile antibodies (HAb)
Reflex testing of samples with previously unknown TgAb status that prove TgAb positive during immunoassay testing
Assisting in the differential diagnosis of early phase silent thyroiditis versus Graves' disease in patients without thyroid cancer (the mass spectrometry-based method would only be required if these patients have TgAb or HAb)
Method Name
Tryptic Protein Fragmentation, purified with Immunocapture, Analysis by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)
(This service is performed pursuant to an agreement with SISCAPA Assay Technologies Inc. covering US Patent 7,632,686)
Performing Laboratory
Mayo Clinic Laboratories in RochesterSpecimen Type
Serum RedSpecimen Required
Collection Container/Tube: Red top (gel tubes/SST are not acceptable)
Submission Container/Tube: Plastic vial
Specimen Volume: 1.25 mL
Collection Instructions: Centrifuge and aliquot serum into a plastic vial.
Specimen Minimum Volume
0.75 mL
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Serum Red | Refrigerated (preferred) | 7 days | |
Frozen | 416 days | ||
Ambient | 72 hours |
Reject Due To
Gross hemolysis | Reject |
Gross lipemia | OK |
Gross icterus | OK |
Reference Values
Healthy individuals with intact, functioning thyroid: ≤33 ng/mL
The reference ranges listed below, however, are for thyroid cancer follow up of athyrotic patients and apply to unstimulated and stimulated thyroglobulin (Tg) measurements. Ranges are based on best practice guidelines and the literature, which includes Mayo Clinic studies, and represent clinical decision levels.
Decision levels for thyroid cancer patients, who are not completely athyrotic (ie, patient has some remnant normal thyroid tissue), have not been established, but are likely to be somewhat higher: remnant normal thyroid tissue contributes to serum Tg concentrations 0.2-1.0 ng/mL per gram of remnant tissue, depending on the thyroid-stimulating hormone (TSH) level.
Tg <0.2 ng/mL: Tg levels must be interpreted in the context of TSH levels, serial Tg measurements, and radioiodine ablation status. Undetectable Tg levels in athyrotic individuals on suppression therapy indicate a minimal risk (<1%-2%) of clinically detectable recurrent papillary/follicular thyroid cancer.
Tg ≥0.2 ng/mL to 2.0 ng/mL: Tg levels must be interpreted in the context of TSH levels, serial Tg measurements, and radioiodine ablation status. Tg levels of 0.2-2.0 ng/mL in athyrotic individuals on suppressive therapy indicate a low risk of clinically detectable recurrent papillary/follicular thyroid cancer.
Tg 2.1 ng/mL to 9.9 ng/mL: Tg levels must be interpreted in the context of TSH levels, serial Tg measurements and radioiodine ablation status. Tg levels of 2.1-9.9 ng/mL in athyrotic individuals on suppression therapy indicate an increased risk of clinically detectable recurrent papillary/follicular thyroid cancer.
Tg ≥10 ng/mL: Tg levels must be interpreted in the context of TSH levels, serial Tg measurements and radioiodine ablation status. Tg levels of 10 ng/mL or above in athyrotic individuals on suppressive therapy indicate a significant (>25%) risk of clinically detectable recurrent papillary/follicular thyroid cancer.
Day(s) Performed
Monday through Friday
CPT Code Information
84432
LOINC Code Information
Test ID | Test Order Name | Order LOINC Value |
---|---|---|
TGMS | Thyroglobulin, Mass Spec., S | 3013-0 |
Result ID | Test Result Name | Result LOINC Value |
---|---|---|
62749 | Thyroglobulin, Mass Spec., S | 3013-0 |
35998 | Interpretation | 59462-2 |
Interpretation
Current guidelines recommend measurement of thyroglobulin (Tg) with a sensitive immunoassay limit of quantification below 1 ng/mL; for measurements of unstimulated Tg, the detection limit should be in the 0.1 to 0.2 ng/mL range.
In all cases, serum antithyroglobulin autoantibodies (TgAb) should also be measured, preferably with a method that allows detection of low concentrations of TgAb (≤20 kIU/L). If TgAb are detected, the laboratory report should alert the ordering provider to the possibility of false-low Tg results. If the apparent Tg concentration is below 1 ng/mL, the sample should be remeasured by mass spectrometry. This will allow confident detection of Tg in the presence of TgAb down to 0.2 ng/mL (risk of residual/recurrent disease <1-3%).
Samples from patients with Tg concentrations above 1 ng/mL (or 2 ng/mL; there is some discussion in the literature) might not require Tg measurement by mass spectrometry, because current guidelines suggest further work-up may be necessary above this threshold. However, the positive predictive value for residual/recurrent disease is modest at best when Tg is just above this threshold (3%-25%, rising in parallel with Tg concentrations up to 10 ng/mL) in athyrotic patients. Above 10 ng/mL, the risk of residual/recurrent disease is at least 25%, with many studies showing 60% to >90% risks. In selected patients, it might also be useful to test TgAb positive samples by mass spectrometry, even if the Tg concentration is above 1.0 ng/mL but has not yet passed the 10 ng/mL threshold. These considerations are even more relevant in patients with a known thyroid remnant of a few grams, who may always have serum Tg concentrations between 1.0 and 10 ng/mL, owing to remnant Tg secretion, regardless of the presence or absence of residual/recurrent cancer.
There are no routine tests that can detect heterophile antibodies in patient samples. An unexpected high result is usually the tip-off in this case and should prompt remeasurement by mass spectrometry, which will provide a reliable result.
It has been determined that the presence of TgAb in serum can lead to underestimation of Tg concentration by immunoassay methods. When antibodies are present in samples with detectable Tg, the Tg values may be underestimated by up to 60% in immunoassays. In addition, 20% of specimens containing antibodies that are negative for Tg by immunoassay tested positive by liquid chromatography tandem mass spectrometry (LC-MS/MS); no results over 3 ng/mL by LC-MS/MS were observed.
In rare cases, when Tg is measured in patients with an intact thyroid gland who do not have thyroid cancer, substantial elevations will primarily be observed in very large goiters, highly active Graves disease, and, most pronounced, in the early phase of acute thyroiditis when follicular destruction releases massive amounts of stored Tg into the circulation. Levels are often well above 100 ng/mL.
Cautions
The test is most sensitive for detection of thyroid cancer recurrence when patients are off thyroid replacement long enough to have an elevated thyrotropin (TSH) prior to collecting the specimen. This test can also be used to follow patients with normal TSH; however, thyroglobulin (Tg) values from specimens with high TSH should not be compared with values with normal TSH, because TSH stimulation may change the baseline determinations, if any residual benign thyroid tissue is still present.
Rare normal amino acid sequence variations within Tg can cause a false-low result in the Tg mass spectrometry assay, if they happen to be present in the Tg proteotypic peptides that are used for Tg quantification. While the exact prevalence of such changes is unknown, validation data on large sample numbers indicate that this affects less than 1% of samples. In the heterozygote state, the result would be an apparent reduction in Tg concentration by about 50%, while the homozygous state (<0.01%) is predicted to result in total loss of signal. Therefore, if the results of the mass spectrometry measurement are much lower than those obtained previously (within 3-6 months) with an immunometric immunoassay, this possibility should be considered. In this event, the recommend is to alert the lab as soon as possible, and they will attempt to resolve the discrepancy.
Method Description
Serum is fractionated by a salting out method. Fractionated serum is then reduced, alkylated, and digested with trypsin. Tryptic fragments are further purified by immunocapture with antibodies specific to the individual fragments. Finally, these fragments are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS).(Unpublished Mayo method)
Report Available
3 to 6 daysSpecimen Retention Time
14 monthsTest Classification
This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.Clinical Information
Thyroglobulin (Tg) is a highly thyroid-specific large homodimeric glycoprotein (approximately 660 kDa). It contains 8% to 10% of carbohydrates and iodine. Thyroxine (T4) and triiodothyronine (T3) are synthesized on Tg within the lumen of thyroid follicles. For T4 and T3 release, Tg is reabsorbed into thyrocytes and proteolytically degraded, liberating T4 and T3 for secretion. Small amounts of intact Tg are secreted alongside T4 and T3 and are detectable in the serum of healthy individuals, with levels roughly paralleling thyroid size (0.5-1.0 ng/mL Tg per gram thyroid tissue, depending on thyrotropin [TSH] level). In situations of disordered thyroid growth (eg, goiter), increased thyroid activity (eg, Graves disease), or glandular destruction (eg, thyroiditis), larger amounts of Tg may be released into the circulation.
Clinically, the main use of serum Tg measurements is in the follow-up of differentiated follicular cell-derived thyroid carcinoma. Because Tg is highly organ-specific, serum Tg concentrations should be undetectable, or very low, after the thyroid gland is removed during primary treatment for thyroid cancer.
Current clinical guidelines consider a serum Tg of more than 1 ng/mL in an athyrotic individual as suspicious of possible residual or recurrent disease. To improve diagnostic accuracy, it is recommended this measurement be initially obtained after TSH stimulation, either following thyroid hormone withdrawal, or after injection of recombinant human TSH. Most patients will have a relatively low risk of recurrence and thereafter, will only require unstimulated Tg measurement.
If unstimulated (on thyroxine) serum Tg measurements are less than 0.1 to 0.2 ng/mL, the risk of disease is below 1%. Patients with higher Tg levels, who have no demonstrable remnant of thyroid tissue, might require additional testing, such as additional stimulated Tg measurements, neck ultrasound, or isotope imaging. A stimulated Tg above 2 ng/mL is considered suspicious.
There are 3 situations, when serum Tg measurement may be misleading:
1. Remnant thyroid tissue (see above, 0.5-1 ng/mL Tg per gram)
2. Antithyroglobulin autoantibodies (TgAb), which occur in 15% to 30% of thyroid cancer patients, can lead to false-low measurement in immunometric assays (most commonly used); in competitive assays they may cause false-high results.
3. Heterophile antibodies (HAb) are antibodies that are capable of interacting with the antibodies used in immunoassays, usually resulting in false-high measurements. Depending on the assay and the patient population, this can lead to erroneously high results in 0.1% to 3.0% of patients.
Traditionally, there have been no reliable means to obtain accurate Tg measurements in patients with TgAb or HAb. However, recently, trypsin digestion of serum proteins, which cuts both antibodies and Tg into predictable fragments, has allowed accurate quantification of Tg in samples with antibody interferences through measurement of Tg-specific tryptic peptides by mass spectrometry.
Forms
If not ordering electronically, complete, print, and send an Oncology Test Request (T729) with the specimen.